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The approximation of continuous- time optimal control problems by sequences 
of finite-dimensional (discrete-time) optimization problems, arising from 

difference replacement of derivatives, is investigated. Necessary and suffi - 
cient condition for the convergence of discrete (finite difference ) approxi- 
mations with respect to a functional is obtained under minimal assumptions 

and estimates of convergence rate are found. The results obtained permit the 

justification of numerical methods for solving optimal control problems on a 
computer and the investigation of a number of interrelated qualitative aspects 

of the optimization of continuous and discrete control systems. 

1, Statement of the problem. We consider the following optimal control 
problem for systems of ordinary differential equations 

I’ = f (z, U, t>, T (to) = 50 (1.1) 

u (t) E U, t E T = it,, t,J (1.2) 
I Cf) E G (t) c R”, t E T (X.3) 

I = q (2 (tJ) 3 inf (1.4) 

The vector $0 EE Rn in (1.1) and the instants ts and tI are taken-as fixed , The 
solution of problem (1.1) - (1.4 ) (for convenience we call it Problem A ) is sought in 
the class of measurable controls n (t) and of absolutely continuous trajectories r (r), 

where it is assumed that at least one admissible pair (5 (t), u (t)}, t E T exists. 
We remark that a number of other optimization problems for systems of ordinary dif- 
ferential equations with fixed and nonfixed time in the presence of phase and integral 

constraints reduce to Problem A. 

We approximate Problem A by a sequence of discrete-approximation Problems AN 
obtained from A by a difference replacement of derivative a’ (r) at specified points of 

pardoning of interval T. For each positive integer N we consider a difference parti- 

tioning TN = (t@, to + hlN, - * -f 
tl> of interval T with variable step hlr~, k = 

1 ,...,m(~),andasetof GN(~)CR~~ t E T approximating constraint (I. 3 1. 

Problem kN consists in the minimization of functional (1.4) under the following con- 
straints : 

XN (t + hkN) = XIV (t> + hkNf (IN (t>v UN (t), t) 
k-l 

XN (to) = 50, t = to -I- 2 hiN7 
i=l 

k = 1, . . ., m (N) 

(1.5) 
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UN (t) E u, t E TN\tl = TN~ 

ZN (t) Cl% GN (t), t s TN 
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(1.6) 

(1.7) 

We Introduce the notation 

hN = max hkiv, PN = Sup Sup inf 
1SKWv) !‘&I’ XEGN(~) zig 

11 r - z 11 

where (( - 11 is some norm in space R”. The problem sequence {AN}, N = 1, 
2 . . ,is called a discrete approximation of Problem A if hN --f 0 and pN -N 0 

as ‘A7 + 00. The set sequence {GN (t)}, N = 1, 2, . . . , is called a PN approx- 
imation of set G (t) if 

de! 

GN (t) 3 [G (t)]pN = {X E R” : ,zi& II z - Z II < PN}, k’= 1, 2, . . . (1.8) 

for all : t E T , 
The present paper’s purpose is to find the conditions under which the optimal val- 

ues of the functional being minimized in Problems AN with large N are as close as 

required to the optimal value of functional (1.4 ) in Problem A (the convergence A N 
+ A with respect to the functional ) holds. On this we base a direct method of solving 

optimal control problems with phase constraints connected with difference replacements 

of derivatives and with passing to finite-dimensional discrete optimization problems. 
The first similar investigations for a linear time-optimality problem were conducted 

by Krasovskii [ 11. Subsequent results in this direction are presented in [ 2- 8 ] and others 
wherein a number of sufficient conditions are obtained for the convergence of discrete 
approximations with respect to a functional for problems of the type being analyzed, 

under various methods of approximating constraints (1.2) and (1.3 ). In the present 

paper we develop a new approach to the investigation of discrete approximations of 
general optimal control problems and we have obtained a necessary and sufficient con- 
dition for convergence AN --f A with respect to the functional together with estimates 

of convergence rate. The methods of the theory of existence of optimal controls 191 
are used to prove the theorems. The results obtained find application in the construction 
of the approximations and in the proof by the scheme in [lo] of the maximum principle 
in nonsmooth optimal control problems with ,phase constraints. 

2. Correct formulation with respect to extension. In what follows 
we assume the fulfilment of the following general conditions on the parameters of the 

problems being analyzed : 
a ) the control domain U is a metric compactum ; 
b) the sets G (t) and GN (t) are closed in R” for all t E T, and G (t) is 

upper-semicontinuous at all points t E (to, tJ not common for the sequence of 

partitionings TN~, N > N,; 
c) the admissible trajectories of Problems A and AN, N > No, do not go out - 

side a certain sphere S, = {z E R” : II 5 II < r}, 0 < r ( co,(sufficient con - 
ditions for this are given in [ 9 1 ) ; 

d) the functions f (z, U, t) and cp (z) are continuous on sets Z = S, X 

u X T and S, , respectiveiy ; 
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e) the Cauchy problem (1.11, (1.2) has a unique solution. 
Together with the original Problem A we consider an auxiliary optimal control 

Problem % which is the Gamkrelidze - extension [ 9, 111 of Problem A : minimize func- 

tional (1.4) on the set of measurable controls (ai (t), ui (t>, i = 1, . . ., n -k 1) 
and of absolutely continuous trajectories it” (t), t, < d < I,, satisfying constraints 
(1.3 > in the following relations : 

n-l-1 

2' = 2 a&(5, zzi, it), 
i=l 

z(to) = 20 (2.1) 

n-f1 

ai(q > 0, 2 a-i@) = 1, 
i=l 

ui(t)E U(8) (2.2) 

tET, i=l, . . ..n+.l 

BY f_k”, f~” and IN’, LV = ‘f , 2, . e l , we denote the minimal values of 
functional (1.4) in Problems A, B and dN respectively, Following [ 121, we say that 

Problem A is correctly formulated with respect to extension if IA0 = 1~“. Correct 
formulation with respect to extension is a natural property of controi systems which is 
violated, as a rule, only in special ” poorly formulated” optimization problems. 

A number of general conditions for correct formulation were obtained in [13 , 143 and 
others (see [ 9 1, wherein broad classes of optimal control problems, correctly formulated 
with respect to extension, with a nonconvex set of admissible velocities have been distin- 
guished s In particular, Problems A without phase constraints (1.3 ) , with thr right -hand 
side linear with respect to the state or one-dimensional, normalin thesense of the maximum 
principle, etc. , are correctly formulated. It is shown below that correct formulation with 

respect to extension is a necessary and sufficient condition for the convergence of discrete 
approximations with respect to the functional, 

3, Approximations of continuous curves. Let us prove the possibility 
of a uniform approximation of admissible trajectories of Problem A by a sequence of 
corresponding trajectories of discrete systems. Let {xX ‘(t), uN (tf} be a discrete pair 

satisfying (1.5 > and (1.6 1. For an arbitrary point t E J’ we denote the elements of 

partitioning TN . , closest to the left and to the right of it, by t” and tN and con- 
sider the piecewise-linear continuation of trajectory XN (t) Onto the whole interval T 

XN @) = xh’ (tN> + t L tN [XN (tN) - EN (t”)] (t - tN), 1, < t < t, (3. I ) 
N 

Theorem 3.1. Let conditions a) and c) - e ) be fulfilled, Then for any tra - 
jectory z (tf admissible in (1.1) --(l. 3 ) and for any choice of a sequence of parti- 
tionings {Y,Y), N = 1, 2, . . , , of interval 7’ we can find a sub-sequence of discrete 

pairs &V @), UN W), N -+ 00 and N E 12, for which relations f 1.5 1 and (1.6 f 

are fulfilled and ~ont~uation (3.1) converges to x (r) uniformly on T_ 

Proof. We first consider the case when control u (t) corresponding by virtue of 
(1. I) and (1.2 ) to the selected trajectory 2 (f) is continuous at almost all points of 
interval T . From the function ‘U (t} specified we form the discrete controls UN (t) 

= a @), tE TNI, N = 1,2,. . . and we show that the corresponding sequence of 
trajectories 5N (t) of system (1.5) converges to x (t) uniformly on T , By virtue 
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of (1.5) and (3.1) we have 

SN’ (t) = f (XN (tN). UN (fN), tN), t E T\TN (3.3 1 

From the theorem ‘s hypotheses we conclude that the sequence (5~ (t)}, t E T, 

N = 1, 2,. . . , is uniformly bounded and equicontinuous ;consequently , it contains a 

uniformly convergent subsequence. By 5* (t) we denote any limit point in c (T) 

of the sequence (5~ (t)}, N = 1, 2,. . . ,and we prove that z* (t) G J: (t). We 

consider the functions hN (t) = f (xN (t”), aN (t,N), tN) on the whole interval 2”. 

From the continui~ almost everywhere on T of control u (t) and from the construc- 

tion of the discrete controls UN (t) it follows that the sequence (hN (t)} converges 

almost everywhere to the function f (r* (tf , u (t). t). Passing to the limit in 

and making use of Lebesgue’s theorem on passing to the limit under the integral sign 
[ 15 ], we find that function a;* (t) is the solution of system (1.1) with u = u’(t). 
The required equality X* (t} s x (t) now follows from the uniqueness of the solution 

of the Cauchy problem for (1.1) with u = u (t) : this proves the theorem when con- 

trol u ($1 is continuous almost everywhere. 

The general case of a measurable control u (t) is reduced to the one already 

considered by using the following statement, Any measurable function u (t) satisfying 

constraint (1,2> can be approximated in the sense of convergence in measure by a se- 

quence of functions ,continuous almost everywhere on T , with the same constraint, 
In this connection the convergence of the corresponding trajectories is uniform. 

TO prove this statement we make use of L&n’s theorem (the C-property of 

measurable functions) c I5 I+ We consider an arbitrary sequence of positive numbers 
ek * 0, k = 1, 2,. . . , and we find closed sets TE* having the properties that 

mes(T \ TEk) < ek 
tinuous. The set T \ 

and that the restriction of function u (9 on Tee is con- 
Tck can be given as the union of a denumerable number of 

nonintersecting intervals (ajk, pjk), ] = 1, 2,. . . Let us consider the functions 

u w t E Tek, k = 1,2,. . . 
U.k I$) = 

Ufajk), tE(ajkcf$k)t j=1,2... 

(3.3) 

From the forms of(3.3) we conclude that functions U, (t) 
at the points t = /3jk, j = 1, 2,. . . . 

can be discontinuous only 
In addition mes {t: uk (t)# u (t)} < ek, 

which ensnres the convergence 

(t)}, k = 1, 2,. . . 
r+ (t) + u (t) in measure. Thus, the sequence {uk 

is the one desired. The uniform convergence of the corresponding 
trajectories follows from Lebesgue ‘s theorem [ 15 1, 

4. Convergence with respect to the functional. Letusstate and 
prove the main result, viz., a theorem on the convergence of discrete approximations 
with respect to the ~nctional. 

Theorem 4.1. Let conditions a) - e) be fulfilled. Then for the sequence 
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of partitionings {TN} of interval T we can find a 

N E 11, PN 3 0, for which the inequalities 
numerical sequence {oN}, 1Jr -+ oo, 

IB’ < lim inf I$< lim sup IN’< IA0 
N-+x NEA N-+m NEA 

(4.1) 

hold for any PN- approximation {GN (t)} of set G (t) , which guarantee the con - 
vergence A iv -+ A with respect to the functional under the condition that Problem A 

is correctly formulated with respect to extension. If function f (r, Z& t) satisfies the 

Lipschitz condition in x on set 2 = 8,. x U x T, then the converse statement is 
valid: the correct formulation with respect to extension of Problem A follows from the 
convergence P %N -+ -4 with respect to the functional under any pN-approximation of 

set G (t) . 

Proof. Let {lk tt))y to 6 t < &, k = 1% 2,. . . ,be a minimizing sequence 
of admissible trajectories in Problem A. From the theorem’s hypotheses we conclude 
that sequence {xk (t)} is relatively compact in space C (T). Consequently, we can 
find a subsequence from {xk (t)}, k = 1, 2,. . ., converging uniformly on T to the 
absolutely continuous function f (t) minimizing functional (1.4) in Problem A. Let 

{TN}, N = 1, 2,. . . ) be any sequence of partitionings of interval T with the 

maximal partitioning step hN -+ 0. Using Theorem 3.1 we can select a subsequence 
of discrete trajectories XN (t), 11’ + 00 and N E&admissible in (1.5) and ( 1. 6)) 
whose continuous extensions converge uniformly on T to the indicated limit 2’ (t). 

We consider an arbitrary sequence of discrete Problems -4~1 in which the sets 
GN (t) form a PN- approximation of set G (t) and the numbers PN are chosen 

from the condition 

p?v> f~:t,ilx”(t)-5N(t)II, PN--+% N-+8=, N=h (4.2) 

Let us prove that relations (4.1) are fulfilled for the sequence of Problems A N being 
examined. At first we prove the validity of the inequality on the right in (4.1). We 

assume that it does not hold, i.e., the inequality 

lim 
N-a, NE.\, 

is fulfilled for some subsequence A, = {N} C A . Then for sufficiently large1V E 
‘41, we have 

INo > q &N (tr)) (4.3 ) 

From the construction of Problems AN it follows that the trajectories zN (t) are ad- 
missible in them since the inclusions 

are valid by virtue of (1.3 ), (1.8 ) and (4.2 ) , Consequently , (4.3 ) cannot hold, i. e. , 
the inequality on the right in (4.1) is fulfilled. 

To prove the inequality on the left in (4.1) it suffices to show that the uniform 
limit of the sequence of trajectories JN (t), t E T ,admissible in ProblemsAN is an 
admissible trajectory of the extended Problem B . From condition b ) it follows that the 
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limit function x (t) satisfies constraint (1.3 ) , Let us prove that the inclusion 
def 

5’ (5) E R (z (t), t) = conv f (z (t), U, t) (4.4) 

f (x, U, t) = {V E R”: v = f (G u, t), 24 Es U} 

is valid for almost all t E T . Here f (r, I/, t> is the set of velocities admissible 
in (1.1) and (1.2) and eonv V denotes the convex hull of set I’, Using the theorem 
on measurable selectors [ 9 ] we can deduce from (4.4 ) that the trajectory z (t) in 
(2.1) and (2.2 ) is realized by the measurable control (ai (t), ui (t), i = 1,. . . , 
n+ 11, Le., is admissible in Problem Ei. 

To prove (4.4 ) we take any e 12 0 and we write the inclusion 

&v’ (Q = f (5N (tN)t UN ttN)v t”) E [f (x(c), u, t)le 

valid for all N > N, and for almost all t e T,. The theorem’s hypotheses let’s 
us conclude thaf the sequence (ZN* (t)), N > N, , converges to i (t) weakly in 
L2 (Id!‘), Applying Mazur ‘s weak closure theorem [ 151 to the sequence, we find that 
Z’ (t) E conv [f(z (t), U, t)le for any E > 0, i.e. t the inclusion 

2’ V) E flfl Cofiv If (5 (% U, t)l, 

is valid for almost all E E T, To prove (4.4 ) it is enough to show that the equality 

(4.5) 

holds under the theorem’s hypotheses. Obviously, the left-hand side of (4.5 ) is con - 
tained in the right-hand one. Let us prove the reverse inclusion. Let Z’ be an element 
of the set on the right-hand side of (4.5). Then, for any numerical sequence Ed 1, 0, 

k =I: 1,2, * , ,, we can find a sequence of vectors {cziii, uik}, i = 1, . . ., n + 1 
and k = 1,2, . . ., for which 

By Uik we denote the points of set U, for which 

Ij I@, nik, t> - Vi!’ 11 < Sk, i = $2 . . ., n i_ 1; k = I,& . . . 14.7) 

Using the compactness of sets U, f (3, U, t) and P = (at : ai > 0, 011 i- a~ 

+ . * . + Gil = I), we pick out a subset of indices -(zc), k + 00, for which 

ujk+Z?EU, {ai”}-t(a?}EP, v~~-YY~, 2=1,...,n+1 

Because of (4.6 ) and (4.7 ) we have 

W-1 
Ue I= f (3, ai’, t), i = 1, . . ., n + 1, u = z ai”f (s, up, t) 

i=_1 

which proves inclusions (4.4 ) and (4.5 ) and the inequality on the left in (4.1) . Thus a 
we have proved that inequalities (4. I ) hold for any pi- approximation of set G (t) 
when the sequence (PN) is chosen in accordance with (4.2 ) and the correct formu- 
lation of Problem A with respect to extension is a sufficient condition for the conver - 
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gence AN -+ A with respect to the functional. 
Let us now prove that the condition of correct formulation of Problem A with res- 

pect to extension is also necessary for the convergence AN +A with respect to the 

funCtiOna for any E)N- approximation of set G (t). We assume that Problem A is not 

correctly formulated with respect to extension, i. e. , IBo < IA’. Under the theorem’s 

hypotheses, an optimal trajectory a?’ (t) exists in Problem B , which can be approxi - 

mated uniformly on T by a sequence of absolutely continuous functions zk (t) satis - 

fying together with certain measurable controls Uk (t) the constraints (2.1) and (2, Z), 

k = 1, 2, . . . . [ 9,111. Using Theorem 3.1 we form the sequence of discrete tra - 

jectories (X&7 (t)}, NE il and N 3 00, whose con~nuations (3.1) converge to 
x*(t) uniformly on T . We choose numbers PN from (4.2) and we consider the 

corresponding sequence of Problems AN forming the PN- approximation of Problem 

A. Using the preceding arguments, we arrive at the relation 

lim N~m, NED 1; = IBO < IA0 

by virtue of which the Problems AN being examined do not converge to A with res - 
pect to the functional, 

N o t es. 4.1, The Lipschitz condition in the proof of necessity in Theorem 4.1 
was required in order that the trajectories admissible in Problem B could be approximated 
by admissible trajectories in (1.11, (1.2). The latter assertion is valid under more 
general assumption ensuring the uniqueness of the solution of the Cauchy problem in 

(2.11, (2.2). 
4.2. An analogous theorem on the convergence of discrete approximations with 

respect to the functional is valid under other (more precise) methods of difference ap- 
proximation of the derivative. 

5. Eatimstcr of the approximation and of the convergence 
rate . Let us find the conditions under which we can effectively estimate the quanti - 

ties P,Y in Theorem 4.1 and the rate of convergence AN + A with respect to the 
functional. By (3~; (x, y) we denote the distance function in space U. 

Theorem 5.1, In addition to conditions a) - e) we assume that function f (5, 

u7 t) satisfies on 2 a Lipschitz condition in all variables with a constant Lr, and 

that an optimal control u”(t) , continuous almost everywhere, exists in Problem A ) 
with the following property : for a specified sequence of partitionings (TN) of interval 

7’ we can find a nondecreasing function o(v), 0 < q < 00, lim o(q) = o(O) = 0, 
and a number N,, for which r1+ 

pr.- (u” (t), u” (tN)) < 0 (t - i?), N > No (5.1) 

is valid for almost all t E 1’ . Then as the {PN}, N = 'i,2, . . . , in Theorem 4.1 
we can take any sequence of positive numbers satisfying the condition 

PN > ii’;l&N -t Alao (hnr), &J -+ 0, N -+ m (5.2) 

(Xl = 'J&fl'(p + 1) exp [LIT], Ma = LfT exp [LIT] 
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If function cp (x) satisfies a Lipschitz conditicvl on 8, with constant L,, then the 
q3peE born 

is valid for the rate of convergence AN -+ A with respect to the functional. the 
&wer bound in f5.3 ) is ~~Q~~~~~~ ~~~~~~ under ~~~~~ a) SC), G (t) ES R” 
and the validity of the Lipscbitz conditions on functions (p and f in (2, t)_ 

Proof . From the constructions in Theorems 3.1 and 4.1 it follows that under the 
assumptions made the desired sequences (pa) are chosen from condition (4-2 ) where- 

inas f (t) we can take the trajectory of (I.2 1, corresponding to the optimal control 

ua{l), being examined ) and as xN (t) we can take the $OhtiOUS of system (1.5 ) , 
corresponding to the discrete controls ufl (8) =: rg” (t)_ t E ~~1~ N = I,2 , , . 

Let us estimate the difference A($) = # ;tO ($1 _ zk (t) ff_ By v&x? of f 3.2) f 

(5.1, ) and the theorem *s hypotheses we have 

for sufficiently lrrrge N(N > NO) and all t E T . Using the Bellman - Gronwall 

lemma C4 J I we obtain the inequality 

from which follows (5.2), It is clear that trajectories XN (r!) are admissible in Rob- 
Iems A N for any choice of sequence (p;y], .# = 1,Z ~ L I . I from (5.2 f . By virtue 

of this we have 

which ensures the upper bound in (5,3 ) L To prove the left ~~equa~ty in (S,3 ) we con - 
sider the sequence of pairs (;~,v~ft), rt,v* (t)} optimal in Problems A N and the tra - 
jectories x.\[ (t) of continuous system (1.1)) corresponding to the controls 

r~~~~~=~~~~~~~~ &$<r<i,, N=l,2,..* (5*4) 

By virtue of(1,5.), (1.5) and (5.4) we have 

n, (8,) z ii %va (ff) - ilz” (bx) Ii < 5 if f &vD (P)* ttx> fP)* P) 
la 
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- f (2” (t), UN0 (tN), t) (1 dt d Lf s A, (t> dt + $- L/T (CL + 1) hi 
to 

From the Bellman - Gronwall lemma follows the inequality 

A1 (tl) -< ‘l&T (p + 1) hN exp [LfTl 

The lower bound in (5.3) now follows from (5.5) and the relations 

INo - IA0 > q (xN (tr)) - l A0 - -&AI @I) > -L&(h) 

(5.5) 

Notes. 5.1. In the hypotheses of Theorem 5.1 there is the assumption that in 

Problem A exists an optimal control, continuous almost everywhere with a specifed 
modulus of continuity which occurs in bounds (5.2) and (5.3 ) . Thus, the upper bound of 

the convergence rate directly in terms of the parameters of Problem A is connected with 
the effective conditions for the existence of optimal controls in specified classes of 
“accessible” functions. (See survey [ 91 for existence theorems of this type). 

5.2. The methods developed in the present paper enable us to obtain analogous 
results on the convergence of discrete approximations for certain types of problems with 
mixed constraints on (T, u). In particular, if the control domain U = U (r, t) depends 
continuously on both variables, then an analog of Theorem 4.1 is valid under an appro- 

priate yN -approximation of set IJ (r, t). If set i: (.x, t) satisfies the Lipschitz condition, 

then by analogy with Theorem 5.1 we can estimate the quantities YN and the rate of 

the convergence A N ---f A with respect to the functional. 
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